Resolving the Enigma of the Clonal Expansion of mtDNA Deletions

نویسندگان

  • Axel Kowald
  • Thomas B L Kirkwood
چکیده

Mitochondria are cell organelles that are special since they contain their own genetic material in the form of mitochondrial DNA (mtDNA). Damage and mutations of mtDNA are not only involved in several inherited human diseases but are also widely thought to play an important role during aging. In both cases, point mutations or large deletions accumulate inside cells, leading to functional impairment once a certain threshold has been surpassed. In most cases, it is a single type of mutant that clonally expands and out-competes the wild type mtDNA, with different mutant molecules being amplified in different cells. The challenge is to explain where the selection advantage for the accumulation comes from, why such a large range of different deletions seem to possess this advantage, and how this process can scale to species with different lifespans such as those of rats and man. From this perspective, we provide an overview of current ideas, present an update of our own proposal, and discuss the wider relevance of the phenomenon for aging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissecting the mechanisms underlying the accumulation of mitochondrial DNA deletions in human skeletal muscle

Large-scale mitochondrial DNA (mtDNA) deletions are an important cause of mitochondrial disease, while somatic mtDNA deletions cause focal respiratory chain deficiency associated with ageing and neurodegenerative disorders. As mtDNA deletions only cause cellular pathology at high levels of mtDNA heteroplasmy, an mtDNA deletion must accumulate to levels which can result in biochemical dysfunctio...

متن کامل

Role of Mitochondria in Ataxia-Telangiectasia: Investigation of Mitochondrial Deletions and Haplogroups

Ataxia-Telangiectasia (AT) is a rare human neurodegenerative autosomal recessive multisystem disease that is characterized by a wide range of features including, progressive cerebellar ataxia with onset during infancy, occulocutaneous telangiectasia, susceptibility to neoplasia, occulomotor disturbances, chromosomal instability and growth and developmental abnormalities. Mitochondrial DNA (mtDN...

متن کامل

Ultradeep mapping of neuronal mitochondrial deletions in Parkinson's disease

Mitochondrial DNA (mtDNA) deletions accumulate with age in postmitotic cells and are associated with aging and neurodegenerative disorders such as Parkinson's disease. Although the exact mechanisms by which deletions form remain elusive, the dominant theory is that they arise spontaneously at microhomologous sites and undergo clonal expansion. We characterize mtDNA deletions at unprecedented re...

متن کامل

Complex mitochondrial DNA rearrangements in individual cells from patients with sporadic inclusion body myositis

Mitochondrial DNA (mtDNA) rearrangements are an important cause of mitochondrial disease and age related mitochondrial dysfunction in tissues including brain and skeletal muscle. It is known that different mtDNA deletions accumulate in single cells, but the detailed nature of these rearrangements is still unknown. To evaluate this we used a complementary set of sensitive assays to explore the m...

متن کامل

Expanding Our Understanding of mtDNA Deletions.

Clonal expansion of mtDNA deletions compromises mitochondrial function in human disease and aging, but how deleterious mtDNA genomes propagate has remained unclear. In this issue (Gitschlag et al., 2016) and in a recent Nature publication, C. elegans studies implicate the mitochondrial unfolded protein response (UPR(mt)) and offer mechanistic insights into this process.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018